An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns
نویسنده
چکیده
This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, meanfield theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملThe World of the Complex Ginzburg-Landau Equation
The cubic complex Ginzburg-Landau equation is one of the most-studied nonlinear equations in the physics community. It describes a vast variety of phenomena from nonlinear waves to secondorder phase transitions, from superconductivity, superfluidity and Bose-Einstein condensation to liquid crystals and strings in field theory. Our goal is to give an overview of various phenomena described the c...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملar X iv : h ep - l at / 0 51 10 18 v 1 7 N ov 2 00 5 Study of color superconductivity with Ginzburg - Landau effective action on the lattice ∗
We study thermal phase transitions of color superconductivity by the lattice simulations of the Ginzburg-Landau (GL) effective theory. The theory is equivalent to the SUf(3) × SUc(3) Higgs model coupled to SUc(3) color gauge fields. From the eigenvalues of a 3×3 gauge-invariant diquark composite, a clear distinction between the 2-flavor color superconductivity (2SC) and the color flavor locking...
متن کاملخواص ترمودینامیکی هسته های 184W و 185W با به کارگیری نظریه گینزبرگ-لانداؤ اصلاح شده
In this paper, formulation of Modified Ginsberg – Landau theory of second grade phase transitions has been expressed. Using this theory, termodynamic properties, such as heat capacity, energy, entropy and order parameters ofandnuclei has been investigated. In the heat capacity curve, calculated according to tempreture, a smooth peak is observed which is assumed to be a signature of transition f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014